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Abstract 

Many Virtual Reality, Augmented Reality, gesture based applications or games on smartphones or 

tablets require the tracking of the orientation of the device. This is achieved by using built-in sensors 

such as accelerometer, compass and gyrometer. By using sensor fusion algorithms the accumulated 

errors of individual sensors can be corrected and the tracking quality can be improved.  We propose an 

algorithm and a multithreaded architecture for Android smartphones that interpolates between the 

orientation gained from accelerometer and compass and the rotation gained from the gyrometer. 

Rotations are presented using quaternions. We illustrate the solution with a simple 3D simulation. We 

compare our solution with the Android built-in virtual rotation sensor. 

1 Introduction 

The information about the current orientation of a handheld device can be used in various 

applications. A widely known use case is the automatic screen rotation feature of the 

operating system on a smartphone or tablet device, which changes the orientation of the 

screen content based on the inclination of the device. For instance, if the device is held 

almost upright and tilted either to the left or to the right for more than 45°, the screen content 

is turned 90° in the opposite direction. This feature is accomplished with an accelerometer 

sensor. Besides this built-in functionality, one can develop own applications that report fine 

grained changes in inclination. The readings of an accelerometer e.g. can be used for a 

virtual spirit level, a tilt-sensitive game controller or a motion detector.  

To enhance the orientation determination, it is possible to additionally use a compass and 

calculate device rotation around the gravitational vector. Thus it becomes possible to 

describe the device orientation in relation to the earth. This orientation can be used for 

interactive virtual and augmented reality applications like e.g. Google Sky Map, Wikitude or 

Google Cardboard virtual reality apps.  
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This paper is organized as follows. In section 2 we describe sensor characteristics in more 

detail. In section 3 we detail our requirements for orientation determination. In 4 we present 

our algorithm and its multithreaded architecture. Here, we also provide an initial evaluation. 

In 5 we discuss related work and in 6 we present our conclusions. 

2 Sensors for orientation determination 

The built-in sensors of mobile devices consist of three independent orthogonally arranged 

sensors, which allow three-dimensional spatial sensor readings of accelerations and the 

surrounding magnetic field. The resulting readings can be interpreted as a three-dimensional 

vector describing a spatial direction with respect to the surface of the earth and the north 

pole. 

The quality of the sensor readings is crucial for the outcome of the orientation determination. 

Due to physical and economical restrictions sensors of current mobile devices are non-

perfect. The installed accelerometer sensors consist of very small structures and tend to take 

noisy measurements, which makes it impossible to distinguish between actual accelerations 

and random noise. Furthermore, the acceleration readings result out of a combination of 

different applied forces, which makes it impossible to distinguish between the gravitational 

and additional linear acceleration. The gravitational vector cannot be deduced. The readings 

of the digital magnetometer sensor are subject to noise and to local magnetic disturbances, 

which lead to a deviated North Pole location. 

To improve the orientation determination it is necessary to filter the raw sensor data. A 

simple method of filtering raw sensor readings is to subsequently calculate the moving 

average of a defined number of last measurements. This low-pass filter implementation 

reduces noise artifacts and high frequency signal components and thus smoothes the signal 

reading. While being fully viable for many applications, this approach introduces a negative 

impact in form of a delay, where the filtered measurement lags behind the actual sensor 

reading. On the contrary, especially interactive applications like games or VR benefit from a 

timely and accurate measurement. For these a less lagging filtering approach is needed. 

More sophisticated mobile handheld devices often include a supplementary gyroscope 

sensor, which can be used to improve the orientation determination by providing an 

independent additional measurement. The gyroscope sensor lacks the possibility of absolute 

orientation determination and only measures the rotational movement. A gyroscope sensor 

makes it possible to measure the rotational velocity of the device very precisely, without 

being negatively affected by further accelerative forces or magnetic disturbances. It is this 

characteristic in particular, that allows comparing it with the accelerometer sensor readings 

and concluding on the shares of gravitational and further accelerations. On the other hand, 

any gyrometer is subject to sensor noise and drift, i.e. an accumulated deviation over time. 

The comparison and interpretation of various sensor measurements in order to gain one joint 

result is known as sensor fusion, see e.g. (Chen et al. 1999). There are different sensor fusion 

approaches with various strengths and weaknesses resulting in algorithms with various 
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degrees of complexity. It is therefore all the more important to know exactly the 

requirements. 

3 Requirements 

The goal of our algorithm is to determine the orientation of a handheld device in relation to 

earth by using built-in sensors. The orientation determination shall not suffer from the above 

mentioned individual sensor insufficiencies. To achieve an orientation as precise as possible, 

the algorithm will use the accelerometer sensor to measure inclination towards the 

gravitational vector and the magnetic sensor to measure rotation around the gravitational 

vector. The gyroscope sensor is used to capture independently the devices’ rotary movement.  

The orientation determination should be timely, as many VR/AR applications or e.g. games 

require a delay as short as possible. It is also expected that the orientation changes are 

smooth, i.e. the ultimate rendering should not be shaky or wobbly. Here, shaky describes that 

the orientation is subject to sensor noise, i.e., tiny rotations at a high frequency in any 

direction are measured, and, unless filtered, are visible in the user interface. Wobbly refers to 

situations where accelerations un-intuitively and unwantedly contribute to orientation 

determination, i.e., unless filtered, a deviating orientation at a lower frequency is observed 

and would become visible in the user interface. However, this deviation is only observable 

for the period of acceleration. To a certain extent this can be avoided by the already 

mentioned filtering with the tradeoff of lagging behind. 

In order to visualize the calculated orientation and to evaluate its quality, we envisioned a 

simple prototype application. A 3D cube (cf. figure 1) will be drawn on the screen and 

animated contrary to the device rotation. This gives the impression that the cube has a fixed 

spatial position. Rotations around the z-axis will not result in viewing new parts of the cube, 

only in rotation of the view, while 

rotations around x- or y-axis show 

new parts of the cube. 

The sensor fusion algorithm 

requires Android 2.3 (as this is the 

first Android version supporting 

gyroscope sensors) and newer. 

The mobile device at least needs 

the above mentioned sensor types, 

an acceleration sensor, a compass 

sensor and a gyroscope sensor. In 

order to guarantee a fluid user 

experience, according to the 

Android SDK, long lasting 

calculations should be performed 

without blocking the main 
Figure 1 Running Android prototype application and its settings menu 
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application thread. Therefore it is desirable to design the algorithm efficiently and take 

advantage of multicore CPUs by performing calculations concurrently.  

4 Architecture Design 

The following part describes our approach for a multithreaded Android based sensor fusion 

software architecture. The focus of this project was on the demonstration of a concurrent, 

responsive sensor fusion implementation that can be reused for various Android applications 

requiring orientation determination.  

4.1 Quaternion-based complementary filter 

We decided to use a sensor fusion approach that works with a quaternion interpolation 

algorithm, whose concept is derived from Shane Coltons balance filter (Colton 2007). His 

complementary filter based approach is a weighted interpolation between two independently 

calculated states representing the inclination of a device. In opposition to his two-

dimensional approach our implementation uses quaternions to represent the calculated 

orientations. The first quaternion is calculated using the acceleration and magnetometer 

sensor data and therefore represent the devices orientation in relation to earth (cf. figure 2). 

An Android helper method is used to calculate the corresponding rotation matrix, which 

afterwards is converted into a quaternion representation. The second calculated quaternion 

results from the gyroscope sensor data und thus only represents the devices rotation 

performed since the beginning of measurements. Furthermore they both inherit the 

characteristic advantages and disadvantages of their respective sensors.  

The orientation represented by the first quaternion is shaky and wobbly, like the underlying 

accelerometer and magnetometer sensor readings are. The orientation represented by the 

second quaternion is very responsive and immune to these measurement errors. In principle, 

for every measurement interval the measured angular velocity must be multiplied with the 

interval’s duration to get the covered rotational angle. All calculated intermediate rotations 

are added up to an initial orientation state and in the end represent the new updated 

orientation of the device. As the gyroscope sensor’s readings are never perfectly exact, the 

numerous inaccuracies over time sum up to a growing deviation called sensor drift and 

therefore to an erroneous orientation determination. 

During the initialization of the algorithm the second quaternion, based on the gyroscope 

sensor data, is equated with the first one, so that both represent exactly the same device 

orientation gathered by accelerometer and magnetometer sensor measurements. During 

runtime after every sensor reading interval, an update and recalculation of the corresponding 

quaternions is taking place.  

An interpolation between these two quaternions is the key to successfully filter out the 

unwanted disadvantages and emphasize the advantages from both measurements. In our case 

we want a sensor fusion algorithm that provides a non-drifting, non-shaky and non-lagging 
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orientation determination of our handheld device. A spherical linear interpolation (SLERP) 

between the two quaternions allows us to weight between the two orientation estimations we 

have and in particular between their specific characteristics (Shoemake 1985). As long as 

both quaternions represent an absolute perfect and flawless orientation, the interpolation 

result will be identical to them. But in reality disturbances and inaccuracies will drive both 

estimations apart. 

 

Figure 1 The quaternion-based complementary filter structure  

Weighting the gyroscope sensor data based orientation with 98% or more and the 

accelerometer/magnetometer based one with less than 2%, produces a very smooth and 

responsive orientation estimation without a lag, shakiness and drift. As the gyroscope 

produces a very responsive and accurate estimation for short terms, its calculation is rated 

very high. To compensate for the gyroscope sensors drift a small amount of the interpolation 

goes towards the estimation coming from the accelerometer and magnetometer sensors, 

which are more exact in the long term. In order to prevent the gyroscope based orientation to 

drift apart, it is necessary to equate and thus correct the orientation product with the 

interpolated solution after each interval. 

4.2 Concurrent sensor fusion 

Besides developing the sensor fusion algorithm itself, it was necessary to take care of 

including it within Androids software framework. One main strategy for developing Android 

applications is the reduction of load within the main application thread, in order to improve 

responsiveness and user experience. As modern mobile devices are equipped with multicore 

CPUs, it became evident to take advantage of them by designing our sensor fusion as a 

concurrent software thread. The goal was to shift most of the calculations regarding the 

sensor fusion into a dedicated thread and reduce the overhead produced by the garbage 

collector by reusing as many data structures as possible, thereby giving the app a better 

memory footprint. The latter point proved to be quite important as the sensors read-out rate 

can easily reach up to 100Hz.  

The sensor fusion thread’s live cycle has been linked to the life cycle of the main 

applications Activity. Thus the initialization, starting and stopping of the sensor fusion itself 

is synchronized with the application. Android’s software framework requires the usage of an 

operating system service called SensorManager to get access to the devices sensors. It is 
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necessary to register for the desired sensors and to implement a callback method named 

onSensorChanged() (Milette & Stroud 2012). This method sorts the incoming sensor data 

according to its origin, briefly preprocesses it and then stores the measurements in data 

structures that are shared with the sensor fusion thread. As this method runs in the scope of 

the main applications thread, it is necessary to synchronize the access to some of the shared 

data structures. We decided to limit the amount of synchronization to a minimum and thus 

only control the access of the gyroscope sensor data. As a matter of fact the gyroscope sensor 

data is crucial for a correct orientation determination. Firstly the chosen weighting 

overemphasizes its impact on the orientation. Secondly it is vital to capture all intermediate 

measurements from the gyroscope sensor, to get a full summation of the measured rotations. 

For each sensor reading of the gyrometer that occurs, we compute the average velocity 

between the actual reading and the average velocity of a series of previous readings. The 

average velocity (also known as mean or effective velocity), is an arithmethic average 

weighted over the time intervals between the time stamps of subsequent readings. 

Conveniently, it can be computed incrementally, i.e. computing the average velocity from n 

readings An is the same as computing from n-1 readings An-1 and then computing the 

weighted arithmetic average between An-1 and one new reading. 

A rotation matrix is only computed, when the sensor fusion thread has new accumulated 

sensor data. The frequency of the fusion thread therefore is tied to the sensors rate. Also in 

our sample app it is parameterizable at which rates the sensors are working and if and how 

long the fusion thread may sleep per cycle. Furthermore regarding synchronization, it has no 

noticeable impacts on the orientation determination if the access on the shared data structures 

of the accelerometer or magnetometer sensor isn’t synchronized. 

4.3 Comparison  

It is eligible to compare the performance of our orientation determination with Android’s 

synthetic Rotation Vector sensor. In spite of the fact, that both offer virtually the same 

functionality, it is very difficult to draw general conclusions. It is up to the manufacturer of a 

device on how they implement the Rotation Vector functionality. It could be a very simple 

software-based solution, but it could also include a gyrometer-based filtering or it could even 

be a hardware-based Motion Processing Unit (MPU) offering the functionality. Every 

Android device is slightly different and thus offers a slightly different performance. Even 

different software revisions on identical devices could result in a change of the performance 

of the Rotation Vector. E.g. the Rotation Vector sensor of a Samsung Galaxy S3 (i9300) with 

Android 4.3 stock firmware offers a very good orientation determination of the device. The 

Galaxy S3 is equipped with an Invensense MPU-6050 MEMS sensor and a motion 

processing processor, which offers optimized embedded sensor fusion processing. While 

running the same device with an alternative custom Android 4.4 firmware from 

Cyanogenmod, the Rotation Vector is less accurate and timely.  

For a better comparison and analysability we converted our calculated quaternions into Euler 

angels and plotted them. Figure 2 shows a small section of the measured y-axis orientation of 

all involved quaternions for a steady and an agitated device. It is easy recognizable that the 

purely gyroscope-based quaternion is drifting while the low-pass filtered accelerometer- and 



Orientation Determination for Android Smartphones 7 

 

magnet-sensor-based quaternion is not drifting over time. While shaking the device the 

accelerometer- and magnet-sensor-based orientation gets heavily disturbed due to the 

additional accelerative forces. 

 

Figure 2 Exemplary plotted y-axis angle of different orientation estimations during holding still and shaking a 

mobile device 

Figure 3 shows an englarged view of the plotted y-axis angle from the figure above. 

It is visible that the SLERP interpolated orientation clearly follows the gyroscope-based 

curve but without the characteristic drift. Compared with the OS Rotation Vector our 

interpolated orientation is not influenced by the additional accelerative forces. 

We’ve also tested our demo app on two older smartphones, a Galaxy Nexus and a Nexus S. 

Both smartphones are official Google development devices and they both perform 

differently. Our algorithm however performs on both of them better, more consistently and 

comparable than the stock Rotation Vector implementation.  

The major advantage of our approach is the configurability of the sensor fusion process and 

the possibility to tweak the processing by means of individual needs. On the other hand it is 

hardly possible to tweak our algorithm to perform identically on every available device. 

Even though the SDK describes an uncalibrated gyroscope sensor, not every devices offers 

this sensor type. The default gyroscope sensor is being automatically corrected for drift. 

Under normal circumstances this produces quite good results. We tested our demo app on a 

consistently rotating turntable. First the orientation determination looked fine, but after some 

time the animated cubes stopped rotating. The constant rotating velocity had been detected 

misleadingly as a drift. After stopping the turntable our animated cubes started rotating in the 

opposite direction. Only one of our devices offers an uncalibrated gyroscope sensor and 
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works correctly with our algorithm. On the other hand none of the Rotation Vector 

implementations of our devices performs correctly, as they all are apparently using the 

automatic drift compensation of Android. 

 

 

Figure 3 Enlarged view of y-axis angle plot 

5 Related Work 

Applications for smartphones based on motion detection with graphics need to be effective 

and efficient. These two factors can even depend on each other, e.g. if an algorithm is time-

consuming. To improve efficiency, code can be optimized for sequential processing, or 

replaced by native code instead of Java, or code can be optimized for multicore processors or 

a graphical processing unit. E.g. the approach RAIOM (Mitaritonna & Abásolo 2013) 

provides a framework addressing different levels of AR applications, e.g. libraries for 

computer vision such as an embedded version of OPEN GL (Khronos 2015). This approach 

purely aims at computer vision and tracking only by camera based detection. Hence, such an 

approach could improve our graphics code but does not provide support for sensor fusion 

which is our primary focus.  

Regarding effectiveness, we were looking for algorithms that fuse readings from different 

sensors to improve the orientation. Complementary filters, allegedly conceived around 1970 

for aircraft control, have become more widespread recently since smartphones equipped with 

motion sensors and other affordable devices ranging from Kinect to robots are more 

widespread and offer easy to program SDKs for non-safety critical applications. 
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Theoretically, they are a kind of low pass filter for moving average. They are easier to 

understand and to program than Kalman filters (Kalman 1960) and computationally less 

costly. This lead us to adopting the complementary filter approach. A similar approach to 

ours can be found in the approach by Colton (Colton 2007). For a balancing application, he 

has implemented a sensor fusion using a gyrometer and one accelerometer for the x-axis 

based on the complementary filter. However, we also use y- and z-accelerometers and also 

include the compass. 

Moreover, we choose quaternions to represent rotations, respectively orientations. In order to 

implement the complementary filter on two quaternions, we adopted the SLERP algorithm 

from Shoemake (Shoemake 1985). This is an algorithm for spherical linear interpolation for 

the purpose of animating 3D rotation using quaternions. Each interpolated point is a linear 

combination and lies on the same sphere. This algorithm matched exactly the requirement for 

a complementary filter on quaternions, or, to put it in another way, it turned out that the 

complementary filter on quaternions has an additional meaning or interpretation, which is the 

interpolation between two rotations. 

As part of his master thesis (Lawitzki 2012), Lawitzki describes an Android implementation 

in Java which implements a fused orientation between gyroscope rotation and 

accelerometer/compass orientation using complementary filter. The approach is very similar 

to ours and differs in the following aspects. Firstly, it does not accumulate gyro readings 

before rotations are computed and it does not use multithreading. Thereby, it might lose 

some readings. Secondly, it implements the complementary filter on rotations matrices  

while we implement it using quaternions. Hence our filtering contains fewer lines of code but 

requires some translations or normalizations of quaternions. 

It has also turned out, that very recently another similar algorithm was proposed by (Slupik 

et al. 2014), which they call lightweight quaternion filter, however not for Java. Also overall 

process of filtering is slightly different: Firstly, they estimate a new orientation based on the 

last orientation and the new gyroscope reading. Secondly, they compute an estimation based 

on accelerometers and magnetometers. But this is only used further if acceleration is not 

higher than a threshold. Thirdly, they use spherical linear interpolation to combine the first 

and second, the weighting again depends on the acceleration observed. They provide an 

initial comparison with extended Kalman filter and concluded that results were quite similar. 

In some cases, their approach performed even better, because they were able to eliminate 

certain accelerations through their threshold and weighting of pure acceleration. This is 

certainly an interesting option to include more dynamicity in the algorithm.  

Another way to include more dynamicity could be an adaptive weighting between the two 

quaternions could be possibly realized with the help of a Kalman filter (Kalman 1960). 

6 Conclusion & Outlook 

In this paper, we have introduced an extension to the spherical linear interpolation algorithm. 

First measurements have demonstrated that our interpolated orientation clearly follows the 
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gyroscope-based curve but without the characteristic drift. Compared with the operation 

system’s Rotation Vector our interpolated orientation is not influenced by the additional 

accelerative forces.  

Our multithreaded sensor fusion software architecture has arisen from the need for an 

efficient and configurable orientation determination algorithm with the future possibility of 

making comparisons between different implementations. As long as the extended 

configurability is not needed, it is easier to use the operating system’s functionality instead. 

Our custom software architecture offers us a flexible foundation for future research in the 

field of sensor fusion. 

The big variety of differently performing devices leads to an interesting future research area. 

It may be interesting to improve our algorithm in order to adapt automatically to different 

devices and their characteristics. The goal would be an identical performance on as many 

different devices as possible.  
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