

Orientation Determination for Android

Smartphones

Peter Wozniak
1
, Katharina Mehner-Heindl

1

Fakultät Medien und Informationswesen, Hochschule Offenburg, Badstraße 24, 77562

Offenburg, Germany
1

Abstract

Many Virtual Reality, Augmented Reality, gesture based applications or games on smartphones or

tablets require the tracking of the orientation of the device. This is achieved by using built-in sensors

such as accelerometer, compass and gyrometer. By using sensor fusion algorithms the accumulated

errors of individual sensors can be corrected and the tracking quality can be improved. We propose an

algorithm and a multithreaded architecture for Android smartphones that interpolates between the

orientation gained from accelerometer and compass and the rotation gained from the gyrometer.

Rotations are presented using quaternions. We illustrate the solution with a simple 3D simulation. We

compare our solution with the Android built-in virtual rotation sensor.

1 Introduction

The information about the current orientation of a handheld device can be used in various

applications. A widely known use case is the automatic screen rotation feature of the

operating system on a smartphone or tablet device, which changes the orientation of the

screen content based on the inclination of the device. For instance, if the device is held

almost upright and tilted either to the left or to the right for more than 45°, the screen content

is turned 90° in the opposite direction. This feature is accomplished with an accelerometer

sensor. Besides this built-in functionality, one can develop own applications that report fine

grained changes in inclination. The readings of an accelerometer e.g. can be used for a

virtual spirit level, a tilt-sensitive game controller or a motion detector.

To enhance the orientation determination, it is possible to additionally use a compass and

calculate device rotation around the gravitational vector. Thus it becomes possible to

describe the device orientation in relation to the earth. This orientation can be used for

interactive virtual and augmented reality applications like e.g. Google Sky Map, Wikitude or

Google Cardboard virtual reality apps.

Orientation Determination for Android Smartphones 2

This paper is organized as follows. In section 2 we describe sensor characteristics in more

detail. In section 3 we detail our requirements for orientation determination. In 4 we present

our algorithm and its multithreaded architecture. Here, we also provide an initial evaluation.

In 5 we discuss related work and in 6 we present our conclusions.

2 Sensors for orientation determination

The built-in sensors of mobile devices consist of three independent orthogonally arranged

sensors, which allow three-dimensional spatial sensor readings of accelerations and the

surrounding magnetic field. The resulting readings can be interpreted as a three-dimensional

vector describing a spatial direction with respect to the surface of the earth and the north

pole.

The quality of the sensor readings is crucial for the outcome of the orientation determination.

Due to physical and economical restrictions sensors of current mobile devices are non-

perfect. The installed accelerometer sensors consist of very small structures and tend to take

noisy measurements, which makes it impossible to distinguish between actual accelerations

and random noise. Furthermore, the acceleration readings result out of a combination of

different applied forces, which makes it impossible to distinguish between the gravitational

and additional linear acceleration. The gravitational vector cannot be deduced. The readings

of the digital magnetometer sensor are subject to noise and to local magnetic disturbances,

which lead to a deviated North Pole location.

To improve the orientation determination it is necessary to filter the raw sensor data. A

simple method of filtering raw sensor readings is to subsequently calculate the moving

average of a defined number of last measurements. This low-pass filter implementation

reduces noise artifacts and high frequency signal components and thus smoothes the signal

reading. While being fully viable for many applications, this approach introduces a negative

impact in form of a delay, where the filtered measurement lags behind the actual sensor

reading. On the contrary, especially interactive applications like games or VR benefit from a

timely and accurate measurement. For these a less lagging filtering approach is needed.

More sophisticated mobile handheld devices often include a supplementary gyroscope

sensor, which can be used to improve the orientation determination by providing an

independent additional measurement. The gyroscope sensor lacks the possibility of absolute

orientation determination and only measures the rotational movement. A gyroscope sensor

makes it possible to measure the rotational velocity of the device very precisely, without

being negatively affected by further accelerative forces or magnetic disturbances. It is this

characteristic in particular, that allows comparing it with the accelerometer sensor readings

and concluding on the shares of gravitational and further accelerations. On the other hand,

any gyrometer is subject to sensor noise and drift, i.e. an accumulated deviation over time.

The comparison and interpretation of various sensor measurements in order to gain one joint

result is known as sensor fusion, see e.g. (Chen et al. 1999). There are different sensor fusion

approaches with various strengths and weaknesses resulting in algorithms with various

Orientation Determination for Android Smartphones 3

degrees of complexity. It is therefore all the more important to know exactly the

requirements.

3 Requirements

The goal of our algorithm is to determine the orientation of a handheld device in relation to

earth by using built-in sensors. The orientation determination shall not suffer from the above

mentioned individual sensor insufficiencies. To achieve an orientation as precise as possible,

the algorithm will use the accelerometer sensor to measure inclination towards the

gravitational vector and the magnetic sensor to measure rotation around the gravitational

vector. The gyroscope sensor is used to capture independently the devices’ rotary movement.

The orientation determination should be timely, as many VR/AR applications or e.g. games

require a delay as short as possible. It is also expected that the orientation changes are

smooth, i.e. the ultimate rendering should not be shaky or wobbly. Here, shaky describes that

the orientation is subject to sensor noise, i.e., tiny rotations at a high frequency in any

direction are measured, and, unless filtered, are visible in the user interface. Wobbly refers to

situations where accelerations un-intuitively and unwantedly contribute to orientation

determination, i.e., unless filtered, a deviating orientation at a lower frequency is observed

and would become visible in the user interface. However, this deviation is only observable

for the period of acceleration. To a certain extent this can be avoided by the already

mentioned filtering with the tradeoff of lagging behind.

In order to visualize the calculated orientation and to evaluate its quality, we envisioned a

simple prototype application. A 3D cube (cf. figure 1) will be drawn on the screen and

animated contrary to the device rotation. This gives the impression that the cube has a fixed

spatial position. Rotations around the z-axis will not result in viewing new parts of the cube,

only in rotation of the view, while

rotations around x- or y-axis show

new parts of the cube.

The sensor fusion algorithm

requires Android 2.3 (as this is the

first Android version supporting

gyroscope sensors) and newer.

The mobile device at least needs

the above mentioned sensor types,

an acceleration sensor, a compass

sensor and a gyroscope sensor. In

order to guarantee a fluid user

experience, according to the

Android SDK, long lasting

calculations should be performed

without blocking the main
Figure 1 Running Android prototype application and its settings menu

Orientation Determination for Android Smartphones 4

application thread. Therefore it is desirable to design the algorithm efficiently and take

advantage of multicore CPUs by performing calculations concurrently.

4 Architecture Design

The following part describes our approach for a multithreaded Android based sensor fusion

software architecture. The focus of this project was on the demonstration of a concurrent,

responsive sensor fusion implementation that can be reused for various Android applications

requiring orientation determination.

4.1 Quaternion-based complementary filter

We decided to use a sensor fusion approach that works with a quaternion interpolation

algorithm, whose concept is derived from Shane Coltons balance filter (Colton 2007). His

complementary filter based approach is a weighted interpolation between two independently

calculated states representing the inclination of a device. In opposition to his two-

dimensional approach our implementation uses quaternions to represent the calculated

orientations. The first quaternion is calculated using the acceleration and magnetometer

sensor data and therefore represent the devices orientation in relation to earth (cf. figure 2).

An Android helper method is used to calculate the corresponding rotation matrix, which

afterwards is converted into a quaternion representation. The second calculated quaternion

results from the gyroscope sensor data und thus only represents the devices rotation

performed since the beginning of measurements. Furthermore they both inherit the

characteristic advantages and disadvantages of their respective sensors.

The orientation represented by the first quaternion is shaky and wobbly, like the underlying

accelerometer and magnetometer sensor readings are. The orientation represented by the

second quaternion is very responsive and immune to these measurement errors. In principle,

for every measurement interval the measured angular velocity must be multiplied with the

interval’s duration to get the covered rotational angle. All calculated intermediate rotations

are added up to an initial orientation state and in the end represent the new updated

orientation of the device. As the gyroscope sensor’s readings are never perfectly exact, the

numerous inaccuracies over time sum up to a growing deviation called sensor drift and

therefore to an erroneous orientation determination.

During the initialization of the algorithm the second quaternion, based on the gyroscope

sensor data, is equated with the first one, so that both represent exactly the same device

orientation gathered by accelerometer and magnetometer sensor measurements. During

runtime after every sensor reading interval, an update and recalculation of the corresponding

quaternions is taking place.

An interpolation between these two quaternions is the key to successfully filter out the

unwanted disadvantages and emphasize the advantages from both measurements. In our case

we want a sensor fusion algorithm that provides a non-drifting, non-shaky and non-lagging

Orientation Determination for Android Smartphones 5

orientation determination of our handheld device. A spherical linear interpolation (SLERP)

between the two quaternions allows us to weight between the two orientation estimations we

have and in particular between their specific characteristics (Shoemake 1985). As long as

both quaternions represent an absolute perfect and flawless orientation, the interpolation

result will be identical to them. But in reality disturbances and inaccuracies will drive both

estimations apart.

Figure 1 The quaternion-based complementary filter structure

Weighting the gyroscope sensor data based orientation with 98% or more and the

accelerometer/magnetometer based one with less than 2%, produces a very smooth and

responsive orientation estimation without a lag, shakiness and drift. As the gyroscope

produces a very responsive and accurate estimation for short terms, its calculation is rated

very high. To compensate for the gyroscope sensors drift a small amount of the interpolation

goes towards the estimation coming from the accelerometer and magnetometer sensors,

which are more exact in the long term. In order to prevent the gyroscope based orientation to

drift apart, it is necessary to equate and thus correct the orientation product with the

interpolated solution after each interval.

4.2 Concurrent sensor fusion

Besides developing the sensor fusion algorithm itself, it was necessary to take care of

including it within Androids software framework. One main strategy for developing Android

applications is the reduction of load within the main application thread, in order to improve

responsiveness and user experience. As modern mobile devices are equipped with multicore

CPUs, it became evident to take advantage of them by designing our sensor fusion as a

concurrent software thread. The goal was to shift most of the calculations regarding the

sensor fusion into a dedicated thread and reduce the overhead produced by the garbage

collector by reusing as many data structures as possible, thereby giving the app a better

memory footprint. The latter point proved to be quite important as the sensors read-out rate

can easily reach up to 100Hz.

The sensor fusion thread’s live cycle has been linked to the life cycle of the main

applications Activity. Thus the initialization, starting and stopping of the sensor fusion itself

is synchronized with the application. Android’s software framework requires the usage of an

operating system service called SensorManager to get access to the devices sensors. It is

Orientation Determination for Android Smartphones 6

necessary to register for the desired sensors and to implement a callback method named

onSensorChanged() (Milette & Stroud 2012). This method sorts the incoming sensor data

according to its origin, briefly preprocesses it and then stores the measurements in data

structures that are shared with the sensor fusion thread. As this method runs in the scope of

the main applications thread, it is necessary to synchronize the access to some of the shared

data structures. We decided to limit the amount of synchronization to a minimum and thus

only control the access of the gyroscope sensor data. As a matter of fact the gyroscope sensor

data is crucial for a correct orientation determination. Firstly the chosen weighting

overemphasizes its impact on the orientation. Secondly it is vital to capture all intermediate

measurements from the gyroscope sensor, to get a full summation of the measured rotations.

For each sensor reading of the gyrometer that occurs, we compute the average velocity

between the actual reading and the average velocity of a series of previous readings. The

average velocity (also known as mean or effective velocity), is an arithmethic average

weighted over the time intervals between the time stamps of subsequent readings.

Conveniently, it can be computed incrementally, i.e. computing the average velocity from n

readings An is the same as computing from n-1 readings An-1 and then computing the

weighted arithmetic average between An-1 and one new reading.

A rotation matrix is only computed, when the sensor fusion thread has new accumulated

sensor data. The frequency of the fusion thread therefore is tied to the sensors rate. Also in

our sample app it is parameterizable at which rates the sensors are working and if and how

long the fusion thread may sleep per cycle. Furthermore regarding synchronization, it has no

noticeable impacts on the orientation determination if the access on the shared data structures

of the accelerometer or magnetometer sensor isn’t synchronized.

4.3 Comparison

It is eligible to compare the performance of our orientation determination with Android’s

synthetic Rotation Vector sensor. In spite of the fact, that both offer virtually the same

functionality, it is very difficult to draw general conclusions. It is up to the manufacturer of a

device on how they implement the Rotation Vector functionality. It could be a very simple

software-based solution, but it could also include a gyrometer-based filtering or it could even

be a hardware-based Motion Processing Unit (MPU) offering the functionality. Every

Android device is slightly different and thus offers a slightly different performance. Even

different software revisions on identical devices could result in a change of the performance

of the Rotation Vector. E.g. the Rotation Vector sensor of a Samsung Galaxy S3 (i9300) with

Android 4.3 stock firmware offers a very good orientation determination of the device. The

Galaxy S3 is equipped with an Invensense MPU-6050 MEMS sensor and a motion

processing processor, which offers optimized embedded sensor fusion processing. While

running the same device with an alternative custom Android 4.4 firmware from

Cyanogenmod, the Rotation Vector is less accurate and timely.

For a better comparison and analysability we converted our calculated quaternions into Euler

angels and plotted them. Figure 2 shows a small section of the measured y-axis orientation of

all involved quaternions for a steady and an agitated device. It is easy recognizable that the

purely gyroscope-based quaternion is drifting while the low-pass filtered accelerometer- and

Orientation Determination for Android Smartphones 7

magnet-sensor-based quaternion is not drifting over time. While shaking the device the

accelerometer- and magnet-sensor-based orientation gets heavily disturbed due to the

additional accelerative forces.

Figure 2 Exemplary plotted y-axis angle of different orientation estimations during holding still and shaking a

mobile device

Figure 3 shows an englarged view of the plotted y-axis angle from the figure above.

It is visible that the SLERP interpolated orientation clearly follows the gyroscope-based

curve but without the characteristic drift. Compared with the OS Rotation Vector our

interpolated orientation is not influenced by the additional accelerative forces.

We’ve also tested our demo app on two older smartphones, a Galaxy Nexus and a Nexus S.

Both smartphones are official Google development devices and they both perform

differently. Our algorithm however performs on both of them better, more consistently and

comparable than the stock Rotation Vector implementation.

The major advantage of our approach is the configurability of the sensor fusion process and

the possibility to tweak the processing by means of individual needs. On the other hand it is

hardly possible to tweak our algorithm to perform identically on every available device.

Even though the SDK describes an uncalibrated gyroscope sensor, not every devices offers

this sensor type. The default gyroscope sensor is being automatically corrected for drift.

Under normal circumstances this produces quite good results. We tested our demo app on a

consistently rotating turntable. First the orientation determination looked fine, but after some

time the animated cubes stopped rotating. The constant rotating velocity had been detected

misleadingly as a drift. After stopping the turntable our animated cubes started rotating in the

opposite direction. Only one of our devices offers an uncalibrated gyroscope sensor and

Orientation Determination for Android Smartphones 8

works correctly with our algorithm. On the other hand none of the Rotation Vector

implementations of our devices performs correctly, as they all are apparently using the

automatic drift compensation of Android.

Figure 3 Enlarged view of y-axis angle plot

5 Related Work

Applications for smartphones based on motion detection with graphics need to be effective

and efficient. These two factors can even depend on each other, e.g. if an algorithm is time-

consuming. To improve efficiency, code can be optimized for sequential processing, or

replaced by native code instead of Java, or code can be optimized for multicore processors or

a graphical processing unit. E.g. the approach RAIOM (Mitaritonna & Abásolo 2013)

provides a framework addressing different levels of AR applications, e.g. libraries for

computer vision such as an embedded version of OPEN GL (Khronos 2015). This approach

purely aims at computer vision and tracking only by camera based detection. Hence, such an

approach could improve our graphics code but does not provide support for sensor fusion

which is our primary focus.

Regarding effectiveness, we were looking for algorithms that fuse readings from different

sensors to improve the orientation. Complementary filters, allegedly conceived around 1970

for aircraft control, have become more widespread recently since smartphones equipped with

motion sensors and other affordable devices ranging from Kinect to robots are more

widespread and offer easy to program SDKs for non-safety critical applications.

Orientation Determination for Android Smartphones 9

Theoretically, they are a kind of low pass filter for moving average. They are easier to

understand and to program than Kalman filters (Kalman 1960) and computationally less

costly. This lead us to adopting the complementary filter approach. A similar approach to

ours can be found in the approach by Colton (Colton 2007). For a balancing application, he

has implemented a sensor fusion using a gyrometer and one accelerometer for the x-axis

based on the complementary filter. However, we also use y- and z-accelerometers and also

include the compass.

Moreover, we choose quaternions to represent rotations, respectively orientations. In order to

implement the complementary filter on two quaternions, we adopted the SLERP algorithm

from Shoemake (Shoemake 1985). This is an algorithm for spherical linear interpolation for

the purpose of animating 3D rotation using quaternions. Each interpolated point is a linear

combination and lies on the same sphere. This algorithm matched exactly the requirement for

a complementary filter on quaternions, or, to put it in another way, it turned out that the

complementary filter on quaternions has an additional meaning or interpretation, which is the

interpolation between two rotations.

As part of his master thesis (Lawitzki 2012), Lawitzki describes an Android implementation

in Java which implements a fused orientation between gyroscope rotation and

accelerometer/compass orientation using complementary filter. The approach is very similar

to ours and differs in the following aspects. Firstly, it does not accumulate gyro readings

before rotations are computed and it does not use multithreading. Thereby, it might lose

some readings. Secondly, it implements the complementary filter on rotations matrices

while we implement it using quaternions. Hence our filtering contains fewer lines of code but

requires some translations or normalizations of quaternions.

It has also turned out, that very recently another similar algorithm was proposed by (Slupik

et al. 2014), which they call lightweight quaternion filter, however not for Java. Also overall

process of filtering is slightly different: Firstly, they estimate a new orientation based on the

last orientation and the new gyroscope reading. Secondly, they compute an estimation based

on accelerometers and magnetometers. But this is only used further if acceleration is not

higher than a threshold. Thirdly, they use spherical linear interpolation to combine the first

and second, the weighting again depends on the acceleration observed. They provide an

initial comparison with extended Kalman filter and concluded that results were quite similar.

In some cases, their approach performed even better, because they were able to eliminate

certain accelerations through their threshold and weighting of pure acceleration. This is

certainly an interesting option to include more dynamicity in the algorithm.

Another way to include more dynamicity could be an adaptive weighting between the two

quaternions could be possibly realized with the help of a Kalman filter (Kalman 1960).

6 Conclusion & Outlook

In this paper, we have introduced an extension to the spherical linear interpolation algorithm.

First measurements have demonstrated that our interpolated orientation clearly follows the

Orientation Determination for Android Smartphones 10

gyroscope-based curve but without the characteristic drift. Compared with the operation

system’s Rotation Vector our interpolated orientation is not influenced by the additional

accelerative forces.

Our multithreaded sensor fusion software architecture has arisen from the need for an

efficient and configurable orientation determination algorithm with the future possibility of

making comparisons between different implementations. As long as the extended

configurability is not needed, it is easier to use the operating system’s functionality instead.

Our custom software architecture offers us a flexible foundation for future research in the

field of sensor fusion.

The big variety of differently performing devices leads to an interesting future research area.

It may be interesting to improve our algorithm in order to adapt automatically to different

devices and their characteristics. The goal would be an identical performance on as many

different devices as possible.

References

Chen, D., Schmidt, A. & Gellerson, H. (1999). An Architecture for Multi-Sensor Fusion in Mobile

Environments. In (Eds.): Proceedings of International Conference on Information Fusion.

Colton, S. (2007). The Balance Filter. {https://b94be14129454da9cf7f056f5f8b89a9b17da0be

.googledrive.com/host/0B0ZbiLZrqVa6Y2d3UjFVWDhNZms/filter.pdf}

Milette, G. & Stroud, A. (2012). Professional Android Sensor Programming. Wrox.

Mitaritonna, A. & Abásolo, M. J. (2013). Hardware and software considerations for RAIOM Mobile

Augmented Reality Framework. {http://www.academia.edu/7948407/

Hardware_and_software_considerations_for_RAIOM_Mobile_Augmented_Reality_Framework}

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Transaction of

the ASME, Journal of Basic Engineering, pages 35-45.

Khronos Group (2015). Open GL ES.{https://www.khronos.org/opengles/}

Lawitzki, P. (2012). Master Thesis. {http://www.thousand-thoughts.com/wp-

content/uploads/MasterThesis_Lawitzki_2012.pdf}

Shoemake, K. (1985). Animating Rotation with Quaternion Curves. Computer Graphics Vol. 19, No 3.

Slupik, J. , Szczęsna, A. & Polański, A. (2014). Novel Lightweight Quaternion Filter for Determining

Orientation Based on Indications of Gyroscope, Magnetometer and Accelerometer. In L.J.

Chmielewski et al. (Eds.): ICCVG 2014. LNCS 8671, Springer International Publishing

Switzerland, 586–593.

