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Abstract. Aspect-oriented concepts are currently exploited to model
systems from the beginning of their development. Aspects capture po-
tentially cross-cutting concerns and make it easier to formulate desirable
properties and to understand analysis results than in a tangled system.
However, the complexity of interactions among di�erent aspectualized
entities may reduce the bene�t of aspect-oriented separation of cross-
cutting concerns. It is therefore desirable to detect inconsistencies as
early as possible.
We propose an approach for analyzing consistency at the level of require-
ments modeling. We use a variant of UML to model requirements in a
use-case driven approach. Activities that are used to re�ne use cases are
the join points to compose cross-cutting concerns. Activities are com-
bined with a speci�cation of pre-and post-conditions into an integrated
behavior model. This model is formalized using the theory of graph trans-
formation systems to e�ectively reason about its consistency. The analy-
sis of an integrated behavior model is performed with the tool ActiGra.

1 Introduction

Aspect-oriented programming promises to provide better separation and integra-
tion of cross-cutting concerns than plain object-oriented programming. Aspect-
oriented concepts have been introduced in all phases of the software development
life cycle with the aim of reducing complexity and enhancing maintainability al-
ready early on.

On the requirements level, cross-cutting concerns, i.e., concerns that a�ect
many other requirements, cannot be cleanly modularized using object-oriented
and view-point-based techniques. Several approaches have been proposed to
identify cross-cutting concerns already at the requirements level and to pro-
vide means to modularize, represent and compose them using aspect-oriented
techniques, e.g., for use-case driven modeling in [1, 2, 3, 4]. A key challenge is to



analyze the interaction and consistency of cross-cutting concerns with each other
and with a�ected requirements. It is in particular the quantifying nature [5] of
aspect-oriented composition that makes the detection of interactions and incon-
sistencies di�cult.

Until now, approaches to analyzing the aspectual composition of require-
ments have been informal [6, 3, 4]. Formal approaches for detecting inconsisten-
cies have been proposed only for the level of aspect-oriented programming, e.g.,
model checking [7], static analysis [8], and slicing [9, 10]. At the programming
level, however, the meta-model considered is pretty di�erent and it takes into
account many low-level details. Requirements abstract from these implementa-
tion related details, and weaving occurs among the high-level activities which
describe the intended behavior of the system.

A commonly used but often informal technique on the requirements level is to
describe behavior with pre- and post-conditions, e.g., using intentionally de�ned
states or attributes of a domain entity model. This technique is, for example,
used for de�ning UML [11] use cases, activities, and methods. In order to allow a
more rigorous analysis of behavior, this approach has to be formalized and also
extended to aspect-oriented units of behavior.

We propose a use-case driven approach with a domain class model. Activ-
ity models are used to re�ne use cases. Object models are used for describing
pre- and post-conditions of activities. This integration between structural and
functional view is called an integrated behavior model. Furthermore, we propose
an aspect-oriented extension. We model the so called base with use cases and
an integrated behavior model. We model aspects as use cases and re�ne them
with an integrated behavior model. During the aspect-oriented composition, we
use activities as join points and follow the composition operations suggested
by AspectJ [12, 13] and similar languages. An integrated behavior model can
be formalized using the theory of graph transformations: Graph transformation
rules are used to formalize pre- and post-conditions of activities. Graph trans-
formation sequences are used to capture the semantics of the activity models. A
formal analysis can be carried out on integrated behavior models computing fa-
vorable and critical signs concerning causalities and con�icts between activities.
This analysis can be carried out before and after the aspect-oriented composi-
tion in order to understand the behavior of use cases and of aspectual use cases
separately and in order to understand the e�ects of aspects. The new tool Acti-
Gra [14, 15], which itself is based on the well known AGG engine for graph
transformations [16, 17], provides this kind of modeling and analysis support.
Throughout the paper we use a UML variant that is directly supported by this
tool.

The idea of formalizing pre- and post-conditions by graph transformation was
presented in [18] �rst and extended to aspect-oriented models in [19]. The aspect-
oriented composition itself was formalized by meta-level graph transformations
in [20]. Since then, the theory and the tools for integrated behavior models have
been advanced and improved. We demonstrate how they can be used in aspect-
oriented modeling.



This chapter is organized as follows. In Sect. 2 we present our aspect-oriented
modeling approach and sketch the weaving process. Sect. 3 presents the theory
of algebraic graph transformations �rst, including con�ict and causality analy-
sis between transformations. Secondly, we give the formal semantics of activity
diagrams augmented by graph transformation rules by means of sequences of
graph transformations. Sect. 4 presents the plausibility checks based on the for-
mal semantics. These analysis facilities are applied to our example in Sect. 5. In
Sect. 6 we discuss related work. In Sect. 7 we conclude and give an outlook.

2 Aspect-Oriented Modeling with Integrated Behavior

Models

Our approach uses integrated behavior models and extends them by aspect-
oriented features. An integrated behavior model consists of a domain model and
a set of activity models. The domain model provides the types of the domain
objects. Each activity is re�ned by pre- and post-conditions describing the e�ect
of the activity in terms of domain objects. Typically, an initial con�guration of
the system is provided in terms of domain objects and their relations.

The bene�t of an integrated behavior model is an early and better integration
of the structural domain model with the functional activity model. Pre- and post-
conditions are formalized by the theory of graph transformation systems. This
formalization can then be used for a rigorous analysis of integrated behavior
models.

In addition to the integrated behavior model, a use case diagram provides a
system overview. Each use case is at least speci�ed by a trigger, its actors, pre-
and post-conditions and its key scenarios. Scenarios are speci�ed using activity
diagrams and use cases are the starting point for the aspect-oriented modeling.
We model the so-called base of the system with use cases and an integrated
behavior model. An aspect is modeled as a use case. The join point for an aspect
is an activity of the base. The pointcut of an aspect is speci�ed in terms of the
activities of the base. While up to now proposed for modeling techniques like
UML, an integrated behavior model is also suitable and bene�cial for aspect-
oriented modeling:

� It is well suited for modeling the base of a system at an early stage.
� It can naturally capture the functional and structural description of each
aspect. An aspect may share the base domain model or add its own concepts.

Using the formal analysis of integrated behavior models for aspect-oriented
modeling is bene�cial as well. Each aspect can be analyzed for consistency, and
the consistency of the entire system consisting of the base and aspects can be
analyzed as well. Analysis is even more crucial for aspect-oriented models:

� Firstly, because of the separated speci�cation of functionality in base and
aspects. (Note that separate speci�cation of functionality also exists in com-
plex modular systems.)



� Furthermore, an aspect is speci�ed once but can be used in many di�erent
places of the system. (Note that this also bears similarity with modular
systems, where a module can be explicitly used by many other modules.)

� Lastly, an aspect is speci�ed on top of and added to modules later on, with
modules not necessarily being aware of the aspect. (Note that this is not the
case in object-orientation, but is unique to aspect-oriented techniques and
similar techniques.)

Because of these three properties, it is di�cult to understand and manually
analyze functional and data dependencies between base and aspects, and also
between aspects. On the other hand, there are well known bene�ts of this kind
of separation of concern, namely for maintenance, reuse, organisation of work
etc.

We use ActiGra to model the running example before and after the com-
position, which is carried out manually following the formalization described
in [20]. Apart from the use case diagram, all �gures have been generated with
ActiGra.

Fig. 1. Crisis Management Use Cases

2.1 The Crisis Management System Example

We present our modeling approach using an example from the Crisis Manage-
ment Systems Case Study [21]. A crisis management system helps in identifying,
assessing, and handling a crisis such as a �re, a �ood, or an accident. It or-
chestrates communication between all parties handling the crisis by managing
resources and access to information. Besides informal requirements, the case
study contains a wide range of models related to software development. We have
adapted a coherent subset of use cases, classes, and activities in the vein of the
case study to illustrate our approach. Fig. 1 gives an overview of the chosen use
cases. We are using an �aspect� stereotype for an aspect use case and a �cross-
cuts� stereotype for the relation of an aspect to the base. Analogous stereotypes
have been proposed in [22]. The �crosscuts� relation means that the behavior of
the aspect is added to a base without refering to the aspect in the base explicitly.
It is called �crosscuts� because often aspects capture concerns that are broadly
scattered. However, it can also be used for adding any other concern without
changing the base.



Use Case ResolveCrisis The intention of this use case is to resolve a crisis by
requesting employees and external resources to execute appropriate missions. An
available employee is chosen as the coordinator. First, he or she has to capture
the witness' report. With the help of the system, he or she creates the corre-
sponding mission(s). Next, he or she assigns missions to resources and controls
their completion.

This use case includes the use case AssignInternalResource, indicated by
the �includes� relationship. When the use case ResolveCrisis is re�ned by an
activity diagram it will contain a so called complex activity named AssignInter-
nalResource.

Use Case AssignInternalResource The intention of this use case is to �nd,
contact, and assign a mission to the most appropriate available employee. Here,
appropriateness simply means availability. An available employee is chosen. The
employee receives the mission information. Based on it he or she can accept, and
is thus assigned to the mission.

When this use case is re�ned, the re�ning activity diagram serves as the
re�nement of the corresponding complex activity AssignInternalResource.

Use Case Authenticate The actor involved is either a coordinator or an em-
ployee. The intention of this use case is to authenticate the actor to the system
since authentication is required to use the functions of the system. If the actor
is not yet logged on, login id and password are prompted, entered and validated.

This use case is designed into the system upfront as an �aspect�. It �cross-
cuts� ResolveCrisis, where the coordinating employee has to log on, and Assign-
InternalResource, where all chosen employees have to log on, both, before further
activities take place. In a real system, this use case would a�ect a lot of further
use cases. Since the pointcut of this aspect is speci�ed in terms of activities, the
complete speci�cation of the composition is given later.

Use Case RequestExternalResource The intention of this use case is to
request help for a mission from an external resource such as an ambulance service.
A request is sent to an external resource. The request is either served or denied.

This use case is added as an �aspect� during maintenance because the base
system is conceived for one institution and the next version shall allow interac-
tion with other institutions in a distributed system. Using an aspect can evolve
the system without changing the base. We are using the same stereotype �cross-
cuts� because technically there is no di�erence whether an aspect is used once or
several times. The aspect shall conditionally replace the use case AssignInternal-
Resource if the coordinator whishes to request external resources. The complete
speci�cation of the aspectual composition is given later.



Fig. 2. Type graph (top), initial con�guration (middle), simulation result (bottom)



2.2 Integrated Behavior Models for the Base

A part of the domain model of the crisis management system is given in Fig. 2
using the type graph of ActiGra. A �Crisis� �requires� the ful�llment of some
�Missions�. A �CMSEmployee� �coordinates� a crisis or is �chosen� or �informed�
or �assigned� to a mission. The �status� attribute of the employee is either set to
�logged on� or �logged o��. For a mission that cannot be assigned to an employee,
a �Request� �needs� to be generated. Its �status� is either �sent� or �served�.

For the subsequent analysis we need a so called initial con�guration of our
system. It contains object instances of the classes de�ned in the type graph
(cf. Fig. 2, middle). Either a valid con�guration can be supplied or the system
contains graph transformation rules that create corresponding objects. Then the
initial con�guration is the empty one.

Our well formed activity models (cf. Sect. 3) consist of simple and complex
activities, start and end nodes, decisions followed by a merge, and loop nodes.
Directed arcs can be labeled by structural constraints ([...]) or interactively eval-
uated user constraints (<...>).

The use case ResolveCrisis is re�ned by the topmost activity diagram in
Fig. 3. Firstly, the coordinating employee is determined who then has to capture
the witness report. The �rst loop generates the required missions. The next loop
assigns an employee to each mission using the complex activity AssignInternal-
Resource. The last loop controls the success of the missions. We have omitted
constraints at the loops, since this use case is not presented in more detail. It is
used only to illustrate the composition of several aspects.

The use case AssignInternalResource is re�ned by the activity diagram in
the middle of Fig. 3. The �rst decision node checks whether the innermost ac-
tivity DetermineMostAppropriateEmployee is applicable. The constraint [Avail-
ableEmployeeExists](cf. Fig. 4) checks whether an employee has not yet been cho-
sen for any mission. The positive pattern �existence of employee� describes parts
of a graph that have to exist. The �not chosen� negative application condition
(NAC) states that the constraint does not allow this pattern. A constraint can
have zero or any number of NACs. This constraint also has a NAC �not informed�
and a NAC �not assigned�, which are not depicted, expressing that an employee
must not be involved in a mission anyhow. Only if the constraint is satis�ed,
the arc labeled with it can be executed. Each of the following loops are applied
until a constraint is satis�ed. The innermost loop chooses an employee. Only if
the employee is logged on, captured by [ChosenEmployeeLoggedIn](cf. Fig. 4),
the enclosing loop is executed which sends mission details to the employee. Only
if that is successful, captured by [Stopped](cf. Fig. 4), the system waits for ac-
ceptance, in which case, captured by [MissionAccept](cf. Fig. 4) the use case
terminates successfully.

In an integrated behavioral model, each activity is re�ned by a pre- and a
post-condition, describing the situation in which the activity can be applied,
and the e�ect. The pre-condition consists of a positive pattern for a graph that
has to exist, optionally equipped with negative application conditions (NACs)
capturing negative patterns preventing the application. Conditions are presented



Fig. 3. Crisis Management Activity Diagrams



Fig. 4. Structural constraints for activity model AssignInternalResource

Fig. 5. Pre- and post-conditions of activities of use case AssignInternalResource



for the activity model of use case AssignInternalResource in Fig. 5. The left
column presents NACs, the middle column the positive pre-condition. The right
column presents the e�ect of each activity, i.e. the post-condition. The identity of
a node is preserved throughout the three columns by assigning the same instance
number to it. The �rst row states that a employee can be assigned once to an
open mission. The second row states that a chosen employee who is logged on
can be informed about the mission once. The last row states that an informed
employee can be assigned to a mission.

2.3 Aspect Modeling

An aspect is identi�ed on the use case level and subsequently re�ned with an
activity diagram. The use case Authenticate is re�ned by the corresponding
activity diagram in Fig. 3 (bottom left). If an employee is not yet logged in, the
execution of RequestLogin changes the status of the employee from �logged_o��
to �logged_on�, (cf. also Fig. 6, top).

The use case RequestExternalResource is re�ned by the corresponding activ-
ity diagram in Fig. 3 (bottom right). A request is sent to an external resource
(cf. Fig. 6, second row). Either the request is accepted (cf. Fig. 6, third row) or
denied (cf. Fig. 6, last row). In our example, the decision is not speci�ed further
since it comes from an external system. For simulation, an arbitrary arc is chosen
and during analysis, both arcs are analyzed.

Fig. 6. Pre- and post-conditions of activities of aspects

Based on the activity models, the aspectual composition can be speci�ed
using the following elements:

� The name of the aspectual use case is given.
� One of the modi�ers is given, which describes, how the aspectual use case is
composed. Here, we use the modi�ers before, after and replace of aspectual



programming languages like AspectJ [12], albeit more complex modi�cations
are conceivable, especially during modeling.

� The pointcut speci�es, where the aspectual use case is composed, i.e., which
join point activities are selected by the pointcut. We assume unique names for
activities. Pointcuts can be speci�ed using rather sophisticated intensional
languages or by mere enumeration of activities. Here we adopt the latter
approach.

� A condition speci�es under which circumstances the aspect becomes e�ec-
tive. This allows for a �exible composition with the base. If the condition
is ful�lled, the aspect is executing. If no condition is given, the aspect will
always execute. As conditions we use structural constraints or interactively
evaluated conditions.

An aspect is woven in each single join point which matches the pointcut
de�nition. Here, an aspect has only one pointcut, but more complex weaving
technologies exist. Regarding order of composition, we simply follow the order of
speci�cations. After a replace composition without a condition, further aspects
might not be applicable. Furthermore, we do not consider aspects of aspects
in our model. Note that aspects without conditions can simulate aspects with
conditions by integrating the condition into the normal control �ow of the aspect
at the beginning of the aspect.

The composition speci�cation for each �crosscuts� relationship is given in
Table 1. The Authenticate aspect is composed once after the activity FindCo-
ordinator (of the use case ResolveCrisis), and once after the activity Deter-
mineMostAppropriateEmployee (of the use case AssignInternalResource). The
Authenticate aspect has no condition since it shall always be carried out. Also,
this aspects checks itself whether an employee is already logged on. Aspect
RequestExternalResource conditionally replaces the activity AssignInternalRe-
source (of the use case ResolveCrisis) if the coordinator decides to do so.

Use Case Modi�er Pointcut (Activity) Condition

Authenticate after FindCoordinator, Determine-
MostAppropriateEmployee

[empty]

RequestExternal-
Resource

replace AssignInternalResource <Request Exter-
nal Resource?>

Table 1. Aspect-Oriented Composition

Finally, ActiGra can be used to execute an activity diagram with its pre-
and post-conditions. When applying use case AssignInternalResource to the ini-
tial Con�guration 1 in the middle of Fig. 2, the simulation is animated on the
activity diagram. The execution starts with the innermost loop and executes
DetermineMostAppropriateEmployee as often as possible but it cannot proceed
because the condition [ChosenEmplLoggedIn] is never ful�lled. This is due to the
absence of an aspect which will be analyzed in more depth later.



2.4 Aspect Weaving

Since its coining, the term aspect-oriented programming has always been a syn-
onym for implementing aspects using weaving, i.e., for a transformation of the
source code which inserts the aspect code in all places speci�ed by a pointcut.
We apply the same concept to the activity model of the aspect-oriented use case,
i.e., we weave the aspect activity model into activity models of the base. Weaving
is controlled by the composition speci�cations illustrated in the previous section.
The modeling of pre- and post-conditions does not play a speci�c role during
weaving, which is also feasible without, albeit for the subsequent analysis they
are mandatory. In [20] we proposed and formalized the model weaving within
our approach. Here, we present it informally only and demonstrate the result for
the example. The weaving process is as follows. Firstly, the join points have to be
determined using the pointcut speci�cations, i.e., all places where weaving has
to take place. The two cases, weaving with conditions and without conditions,
have to be combined with the modi�ers before, after and replace.

Weaving without conditions:

� before: The aspect activity diagram replaces all incoming arcs to the join
point activity speci�ed in the pointcut.

� after : The aspect activity diagram replaces the outgoing arcs from the join
point activity speci�ed in the pointcut.

� replace: The aspect activity diagram replaces the activity. The incoming and
outgoing arcs are glued to the �rst rsp. last activities of the aspect activity.

Weaving with conditions:

� before: The condition is inserted as a decision node into the aspect diagram
after the start node with the positive arc linked to the �rst activity and with
the negative arc linked to the end node. A merge node is inserted before the
end node and all incoming arcs become incoming arcs of the merge node.
The augmented aspect activity diagram replaces all incoming arcs to the
join point activity speci�ed in the pointcut.

� after : The condition is inserted as a decision node into the aspect diagram
after the start node with the positive arc linked to the �rst activity and with
the negative arc linked to the end node. A merge node is inserted before the
end node and all incoming arcs become incoming arcs of the merge node.
The augmented aspect activity diagram replaces all outgoing arcs from the
join point activity speci�ed in the pointcut.

� replace: The condition is inserted as a decision node before (see before above)
the join point activity speci�ed in the pointcut. The positive arc of the branch
is linked to the �rst activity of the aspect. The negative arc is linked to the
join point activity. A merge node is inserted after (see after above) the
join point activity. All incoming arcs of the end node of the aspect become
incoming arcs of the merge node.

In all cases, start and end nodes of the aspect activity diagram are removed
and dangling arcs are glued correspondingly. The weaving results of the example



Fig. 7. Use cases with aspects woven



are depicted in Fig.7. The aspect Authenticate is woven into the use case Re-
solveCrisis after the join point activity FindCoordinator. It is also woven into the
use case AssignInternalResource after the join point activity DetermineMostAp-
propriateEmployee. The aspect RequestExternalResource is woven into the use
case ResolveCrisis. It is linked via a new decision node to the join point activity
AssignInternalResource. Note that after weaving the complex activity AssignIn-
ternalResource is changed but this is not visualized in the activity model for use
case ResolveCrisis.

Again,ActiGra can be used to execute an activity diagram with its pre- and
post-conditions. When applying AssignInternalResource_woven to the initial
con�guration in the middle of Fig. 2, the simulation is animated on the activity
diagram. It starts with the innermost loop and executes each loop and activity
once resulting in Con�guration 2 of Fig. 2, terminating successfully.

3 Formalization of Integrated Behavior Models

Integrated behavior models can be formalized by graph transformation systems.
Domain models are formalized by type graphs, while con�gurations are speci�ed
by their instance graphs. Pre- and post-conditions of activities as well as con-
straints are expressed by graph transformation rules. The control �ow of activity
models is de�ned by graph transformation sequences.

Firstly, we present the underlying theory of graph transformation systems,
consisting of graphs, transformations, and graph transformation sequences. These
systems can be analyzed for con�icts and causalities between transformations.
Secondly, we present the semantics of integrated behavior models, which is rooted
in graph transformation sequences that are used to simulate the execution of ac-
tivity models.

3.1 Graph Transformation Systems

Graphs are often used as abstract representation of diagrams. When formalizing
object-oriented modeling, graphs occur at two levels: the type level (de�ned
based on class models) and the instance level (given by all valid object models).
This idea is described by the concept of typed graphs, where a �xed type graph
TG serves as an abstract representation of the class model. As in object-oriented
modeling, types can be structured by a generalization relation. Multiplicities and
other annotations are not formalized by type graphs, but have to be expressed by
additional graph constraints. Instance graphs of a type graph have a structure-
preserving mapping to the type graph.

Graph transformation is the rule-based modi�cation of graphs. Rules are
expressed by two graphs (L,R), where L is the left-hand side of the rule and R is
the right-hand side, usually overlapping in graph parts. Rule graphs may contain
variables for attributes. The left-hand side L represents the pre-conditions of the
rule, while the right-hand side R describes the post-conditions. L∩R (the graph
part that is not changed) and the union L ∪ R should form a graph again, i.e.,



they must be compatible with source, target and type settings, in order to apply
the rule. Graph L \ (L ∩ R) de�nes the part that is to be deleted, and graph
R\(L∩R) de�nes the part to be created. Furthermore, the application of a graph
rule may be restricted by so-called negative application conditions (NACs) which
prohibit the existence of certain graph patterns in the current instance graph.
Note that we indicate graph elements common to L and R or common to L and
a NAC by equal numbers.

A direct graph transformation G
r,m
=⇒ H between two instance graphs G

and H is de�ned by �rst �nding a match m of the left-hand side L of rule r
in the current instance graph G such that m is structure-preserving and type-
compatible and satis�es the NACs (i.e. the forbidden graph patterns are not
found in G). We use injective matches only. Attribute variables used in graph
object o ∈ L are bound to concrete attribute values of graph object m(o) in G.
The resulting graph H is constructed by (1) deleting all graph items from G
that are in L but not also in R; (2) adding all those new graph items that are
in R but not also in L; and (3) setting attribute values of preserved and created
elements.

A graph transformation (sequence) consists of zero or more direct graph trans-
formations. A set of graph rules, together with a type graph, is called a graph
transformation system (GTS). A GTS may show two kinds of non-determinism:
(1) For each rule several matches may exist. (2) Several rules might be applica-
ble to the same instance graph. There are techniques to restrict both kinds of
choices. The choice of matches can be restricted by object �ow, while the choice
of rules can be explicitly de�ned by control �ow on activities.

3.2 Con�icts and Causalities between Transformation Rules

A reason for non-determinism of graph transformation systems is the potential
existence of several matches for one rule. If two rules are applicable to the same
instance graph, they might be applicable in any order with the same result. In
this case they are said to be parallel independent otherwise they are in con�ict.

Con�ict Types. One rule may disable the second rule. In this case, the �rst rule
r1 is also said to be causing a con�ict with the second rule r2. The following
types of con�icts can occur:

delete/use: Applying r1 deletes an element used by the application of r2.
produce/forbid: Applying r1 produces an element that a NAC of r2 forbids.
change/use: Applying r1 changes an attribute value used by the application of
r2.

Causality Types Conversely, one rule may trigger the application of another
rule. In this case, this sequence of two rules is said to be causally dependent. The
following types of causalities can occur where rule r1 triggers the application of
r2:



produce/use: Applying r1 produces an element needed by the application of
r2.
delete/forbid: Applying r1 deletes an element that a NAC of r2 forbids.
change/use: Applying r1 changes an attribute value used by the application of
r2.

Example 1. Figure 8 shows an example of a produce-use dependency between
the transformation rules DetermineMostAppropriateEmployee and SendMission-
Information. While the �rst rule creates a new relation of type �chosen� between
a �CMSEmployee� and a mission, the second rule uses this relation and deletes
it.

Fig. 8. Produce-use causality example between two transformation rules

3.3 Semantics of Integrated Behavior Models

As in [23], we de�ne integrated behavior models by well-structured activity mod-
els consisting of a start activity s, an activity block B, and an end activity e
such that there is a transition between s and B and another one between B and
e. An activity block can be a simple activity, a sequence of blocks, a fork-join
structure, decision-merge structure, and loop. In addition, we allow complex ac-
tivities which stand for nested well-structured activity models. In this hierarchy,
we forbid nesting cycles. Activity blocks are connected by transitions (directed
arcs). Decisions have an explicit if -guard and implicit else-guard which equals
the negated if -guard, and loops have a loop-guard with corresponding implicit
else-guard. Guards can be user-de�ned, i.e. independent of system con�gura-
tions, or graph constraints checking certain conditions on system con�gurations.



The semantics of an integrated behavior model is de�ned by a set of graph
transformation rules sequences. Considering the formalization of activities with
pre- and post-conditions by graph transformation rules, the sequences represent
all possible control �ow paths de�ned by well-structured activity models. In this
context, each graph constraint is translated to a rule containing the constraint as
left-hand side and an identical right-hand side. The semantics of a simple activity
Sem(A) is a set consisting of one sequence with only one rule. The semantics of
two subsequent activity blocks A and B contains all sequences beginning with
a sequence of Sem(A) and ending with a sequence of Sem(B). For decision
blocks we construct the union of sequences of both branches (preceded by the
guard rule or its negation, respectively). For loop blocks, we construct sequences
containing the body of the loop 0 ≤ i ≤ n times (where each body sequence is
preceded by the loop guard rule in case that the loop guard is not user-de�ned).
The semantics of a complex activity is the semantics of the largest block of its
contained integrated behavior model.

Example 2. Considering the integrated behavior model of use case AssignIn-
ternalResource, its semantics contains e.g. sequence AvailableEmployeeExists,
NotMissionAccepted, NotStopped, NotChosenEmpLoggedIn, Determine
MostAppropriateEmployee, NotChosenEmpLoggedIn, DetermineMost
AppropriateEmployee, ChosenEmpLoggedIn, SendMissionInformation,
Stopped, AwaitingMissionAcceptance, MissionAccepted.

4 Using Plausibility Checks for Integrated Behavior

Models with Aspects

Given the formal semantics of integrated behavioral models as simulation runs,
these sequences can be formally analyzed for favorable and critical dependencies
and con�icts between the rules in those sequences. The results are captured in
di�erent sets of relations.

After introducing the checks from [15], we discuss how they can be used
speci�cally in aspect-oriented modeling. The checks are supported by ActiGra.

4.1 Plausibility Checks for Integrated Behavior Models

Integrated behavior models combine control �ow models with functional behav-
ior speci�cations. Since two kinds of models are used for this purpose, static
analysis of integrated behavior models helps to argue about their consistency. In
[15], a variety of so-called plausibility checks are presented that can be used for
argumentation. For each check, favorable and critical signs can be determined
that support or are opposed to behavior consistency.

1. Initialization: The applicability of the �rst rule in the speci�ed control �ow
to the initial con�guration forms a favorable sign.



2. Trigger causality along control �ow: This plausibility check computes for
each rule in a given control �ow which of its predecessor rules may trigger
this rule. It favorable that at least one predecessor exists for each rule.

3. Con�icts along control �ow: This plausibility check computes for each rule
in a given control �ow which of its successor rules may be disabled this rule.
It favorable that there do not exist such successors for any rule.

4. Trigger causality against control �ow: This plausibility check computes for
each rule in a given control �ow which of its successor rules may trigger this
rule. It favorable that there do not exist such successors for any rule. In
case that such a successor exists, the modeler should inspect if it should be
shifted before the rule it triggers.

Note that guards are reformulated as non-changing rules and integrated into
the plausibility check then.

4.2 Analysis of Aspects with Plausibility Checks

In our modeling approach, plausibility checks will be computed for base and
aspect separately, and for the entire woven model. The analysis is therefore
applied incrementally in two stages:

1. The consistency of the base and the aspects is checked separately. It is de-
sirable that consistency is achieved separately where feasible.

2. The consistency of the composition of aspect and base is checked. It su�ces
to analyze the control �ow that contains the woven aspect activities. This
can be deduced from the pointcut speci�cation (but this inference is not yet
implemented in ActiGra, and the resulting weaving has to be computed
by hands). The problems revealed are directly related to this composition
if consistency was achieved before hand. This stage includes checking the
consistency between aspects, since their e�ects on each other can not be
generally checked on the stage before. Instead, their speci�c e�ect on each
other when composed with a base system is considered.

At state 2, in the control �ows a�ected by the aspects, triggers and con�icts
between activities of the base may change compared to state 1 if use cases
are replaced during the weaving. Con�icts between base activities (including
con�icts of an activity with itself) may disappear because an aspect added to
a control �ow changes the sequence such that a con�ict is no longer e�ective.
Newly arising triggers and con�icts at stage 2 have di�erent sources. They may
occur between base and aspect or between di�erent aspects. They may also occur
between activities of one aspect due to the following reason. After weaving, an
aspect becomes part of new control �ows. These control �ows can have the
e�ect that an aspect is potentially executed several times in a loop. Then its
activities are potentially in con�ict with themselves and also with each other. If
the activities were not part of such loops before weaving, there are new con�icts
and triggers after the weaving.



Con�icts and causalities may occur between individual activities rsp. corre-
sponding transformation rules. In general, a potential con�ict need not lead to a
concrete con�ict; this is especially true in the case of change/use con�icts which
often indicate that activities use attributes changed by other activities.

� Con�ict between base and aspect: If a con�ict exists between a base activity
rsp. its rule r1 and an aspect activity rsp. its rule r2, the aspect is disabled by
the basis, and vice versa. This is not desirable for before- and after-aspects.
For replace aspects it is no problem if the rule r1 of the basis is completely
replaced by the aspect.

� Con�icts between aspects: A con�ict can exist between two activities rsp.
rules stemming from two di�erent aspects. If one aspect disables another
aspect and is woven into an activity diagram in the control �ow before the
other aspect, the con�ict is not desirable and has to be examined further.

� Trigger causality between base and aspect: If a trigger from base to aspect
exists, this is not a problem. If no trigger exists this is also not a problem
but then it should be ensured that the aspect still can work.

� Trigger causality between aspects: If causalities exist they should be along the
control �ow of the entire system including aspects. If no trigger causalities
between aspect exists, it should be ensured that each aspect can work.

The plausibility checks can be used at stage one as follows:

� Initialization is checked for base and aspects separately. At least one base
activity model should be applicable to the initial con�guration. If an aspect
is applicable to the initial con�guration this means that it is orthogonal to
the base or perhaps con�icting with the base. It is not required that an
aspect is applicable to the initial con�guration.

� Triggers along control �ow inside an activity model are bene�cial. Absence
has to be checked for consistency.

� Triggers against control �ow have to be checked for consistency.

� Con�icts inside an activity model have to be checked for consistency.

At stage two plausibility checks can be used as follows:

� An aspect must be applicable to the initial state or needs trigger causalities.

� Trigger causalities along the control �ow may stem from the base or from
other aspects.

� The check for triggers against control can be used to identify problematic
cases. It may be the case that a join point is not well chosen, i.e. too late or
too early in a given use case or even in the wrong use case.

� There must not be con�icts newly introduced, i.e., of aspect activities with
the (remaining) base or with each other.

� If the base was not consistent without aspect(s) one should check if the entire
system becomes consistent after aspect composition.



5 Analysis of the Example

Here we present the plausibility analysis using ActiGra of the use case As-
signInternalResource, the aspect use cases Authenticate and RequestExternalRe-
source, and the woven use cases AssignInternalResource and ResolveCrisis.

Analyzing the use case AssignInternalResource ActiGra visualizes the
results of each plausibility check separately in the activity model. For reasons of
space, we can not include the �gures for all checks.

Fig. 9. Trigger and con�ict checks for AssignInternalResource

1. Initialization: The �rst reachable activity DetermineMostAppropriateEm-
ployee is applicable to the initial Con�guration 1.

2. Triggers along control �ow (cf. Fig. 9, top): All activities and conditions
have triggers. Because of the loops, these triggers are along the control �ow.



SendMissionInformation triggersDetermineMostAppropriateEmployee. Here
the �rst activity deletes the �chosen� arc which is forbidden by the second
activity. The condition [Stopped] however avoids this path. Since there is no
other trigger for DetermineMostAppropriateEmployee and since it is appli-
cable to the initial con�guration there is no problem.
DetermineMostAppropriateEmployee triggers SendMissionInformation by pro-
ducing a �chosen� arc which is used by SendMissionInformation. However,
Fig. 8 reveals that SendMissionInformation is not fully enabled by this trig-
ger, since the employee status is not changed. Moreover, there is no other
trigger that would change the status. As the employee status in Con�gura-
tion 1 (cf. Fig. 2) is �logged_o��, the activity model is not executable on this
con�guration. SendMissionInformation triggers AwaitingMissionAcceptance
by producing the �informed� arc used. More triggers are not needed.
The three triggers for the conditions are producing something used by the
conditions and are therefore plausible.

3. Triggers against control �ow : The triggers are the same as above, only now
they are categorized di�erently. The triggering of conditions is still along
the control �ow. The mutual triggers between DetermineMostAppropria-
teEmployee and SendMissionInformation and the trigger from SendMission-
Information to AwaitingMissionAcceptance are now considered against the
control �ow. However, their e�ects on the entire diagram as discussed above
remain the same.

4. Con�icts along control �ow (cf. Fig. 9, bottom): There are con�icts of each
activity with itself. That means that if an activity can occur in the control
�ow after itself it cannot be applied a second time because it deletes some-
thing that is needed or it produces something that is forbidden. This is no
problem here.
Also there is a con�ict between SendMissionInformation and the condition
[ChosenEmplLoggedIn] which means that the loop will not be executed a
second time which is desirable. The same holds for [AwaitingMissionAccep-
tance] and [Stopped].

Analyzing the aspect Authenticate Since this aspect contains only one
activity and only a condition that checks the applicability of this activity, only
two checks are interesting. We explain them shortly without another �gure.
Please compare Figure 3. The checks for con�icts and triggers against control
�ow do not make sense in absence of further activities.

1. Initialization: Activity RequestLogin is applicable to the initial con�guration.
2. Triggers along control �ow : Obviously the activity RequestLogin has no trig-

ger but can be applied to the initial con�guration.

Analysing the aspect RequestExternalResource In Fig. 10, we visualize
the analysis results of the check for triggers. The complete results are as follows:

1. Initialization: Activity SendRequest is applicable to the initial con�guration.



2. Triggers along control �ow : The activity SendRequest is never triggered but
applicable to the initial con�guration. This activity triggers the activity Ac-
ceptRequest and DenyRequest which is consistent. (cf. Fig. 10).

3. Triggers against control �ow : There are no triggers against the control �ow.
4. Con�icts along control �ow : There are no con�icts.

Fig. 10. Triggers along the control �ow for aspect RequestExternalResource

Analyzing the woven use case AssignInternalResource For the use case
AssignInternalResource_woven, the results are as follows (cf. Fig. 11.)

1. Initialization: DetermineMostAppropriateEmployee is still applicable.
2. Triggers along control �ow(cf. Fig. 11, top): Firstly, there are the same trig-

gers as in the unwoven use case AssignInternalResource. Secondly, Request-
Login triggers the conditions [Stopped] and [MissionAccepted] and the two
activities SendMissionInformation and AwaitingMissionAcceptance. This is
because RequestLogin changes the status to �logged_on� which is needed by
all of the aforementioned elements.

3. Triggers against control �ow : Firstly, there are the same triggers as before.
Secondly, RequestLogin triggers the two activities SendMissionInformation
and AwaitingMissionAcceptance. This is because RequestLogin changes the
status to �logged_on� which is needed by all of the aforementioned elements.
Again, because of the loops there are the same triggers along the control �ow
as against the control �ow.

4. Con�icts along control �ow(cf. Fig. 11, bottom): Now there is one less con-
�ict than in the unwoven use case. The con�ict of activity DetermineMostAp-
propriateEmployee with itself does not exist any longer because the overall
control �ow changed.

The insertion of the aspect into the base makes the woven activity model exe-
cutable for the given Con�guration 1. The reason is that the activity RequestLo-
gin of the aspect provides the missing trigger for the activity SendMissionInfor-
mation of the base. Executing AssignInternalResource_woven on Con�guration
1 with ActiGra also terminated.



Analyzing the woven use case ResolveCrisis We cannot present the com-
plete analysis of ResolveCrisis_woven for reasons of space since this would also
require to illustrate all pre- and post-conditions of the involved activities. The
interesting question from the aspect-oriented modeling point of view is the anal-
ysis of the con�icts and causalities between the aspects involved. This use case
has two aspects woven at the top level and one nested aspect woven into its com-
plex activity AssignInternalResource. We have to take into account the complete
control �ow including also all activities of the woven complex activity. There are
some noteworthy analysis results (cf. Fig. 7, for the woven use cases):

� Between the two top level aspects Authenticate and RequestExternalResource
there are no con�icts and causalities. It means that the two aspects are
independent of each other. This is desirable, especially since the execution
of RequestExternalResource is conditional.

� The aspect Authenticate is also woven into the complex activity AssignIn-
ternalResource. Here, Authenticate does not create con�icts and causalities
with the top level aspect RequestExternalResource.

� The top level Authenticate aspect is the �rst in the control �ow, the nested
Authenticate aspect is the second in the control �ow. The analysis reveals a
con�ict between the two, since the �rst occurence of the activity RequestLogin
changes an attribute used by the second occurence. This is however only a
potential con�ict, since the �rst RequestLogin takes place for the coordinator
and the second takes place for an employee.

� The activities of aspect RequestExternalResource are each in con�ict with
itself, because the aspect is now contained in a loop. Also, DenyRequest and
AcceptRequest are in mutual con�icts since they are now contained in a loop.
The same happens with the activity RequestLogin nested in the complex
activity AssignInternalResource after the weaving. It is now in con�ict with
itself due to the outermost loop in which it is now contained.

� In the analysis of AssignInternalResource we identi�ed triggers from Re-
questLogin to other elements. The �rst occurence of RequestLogin triggers
now the same activities that are already triggered the second occurence in
the nested aspect However, these are potential triggers, since the �rst Re-
questLogin takes place for the coordinator and the second takes place for an
employee.

6 Related Work

The Crisis Management Systems (CMS) case study was proposed in [21] as a
benchmark example for comparing aspect-oriented modeling approaches. The
paper presents the requirements for a generic CMS informally and details the
use cases for a �Car Crash CMS�, a system for dealing with car accidents. A
non-functional requirement of �Security� states that the CMS shall de�ne access
policies for various classes of users. Our analysis introduces an integrated be-
havior model of the generic CMS and it formalizes the aspects of authentication



Fig. 11. Trigger and con�ict checks for AssignInternalResource_woven



(a part of the Security requirement that can be described functionally) and the
request of external resources (a functionality which in our modeling crosscuts
several parts of the system). Our approach is functional in its nature since it
requires that everything relevant in the system is modeled as model elements
which create and remove activities.

In our previous work [20] we have used the same con�ict and causality (for-
merly called dependency) de�nition as here. However, the control �ow as given
by the activity models was not taken into account, since at that time we could
only use AGG [16] to perform the analysis. AGG computes a con�ict and de-
pendency matrix and for each two rules all potential con�icts and dependencies.
Each con�ict is given by graph and two transformations applied to it, while each
dependency is given by a transformation sequence of length 2 with its intermedi-
ate graph. Given a a control �ow, the relevant con�icts and dependencies have to
be manually determined in AGG. With ActiGra [15], this step is automatized
by integrating activity models.

As recalled in the introduction, several researchers have studied the problem
of interference among aspects at the coding level. [24] classi�es interactions of as-
pects with a base: an aspect can be considered spectative, regulative, or invasive
with respect to the system to which is applied; in [25] the categories are formally
described by temporal logic predicates on program states. This classi�cation is
useful also at the modeling level we adopted: a spectative aspect only gathers
information about the system to which it is woven but does not in�uence the
computations of the base otherwise; a regulative aspect changes the activation
of activities under certain conditions but does not change the base computation
further; an invasive aspect does change the base system arbitrarily. However, we
focus on potential con�icts (and triggers) that may rise when given control �ows
are woven together.

Other tools for graph transformation systems allow for their speci�cation
and controlled simulation according to given activity �ows: see for example Fu-
jaba [26], VMTS [27], and GReAT [28]. These tools, however, do not provide sup-
port for analyzing con�icts and causalities: ActiGra [15] leverages the critical
pair analysis implemented by AGG [16] to detect possibly unwanted interactions.

7 Conclusion and Outlook

Activity diagrams are a widely used modeling language for describing the func-
tional behavior of a system at di�erent level of abstractions, ranging from re-
quirements models and work �ow descriptions to more coding-oriented speci�-
cations like �owcharts. Their semantics however are often semi-formal and vary
a lot. Integrated behavior models are one way to give formal semantics to ac-
tivity models, moreover in a broader context integrated with a domain model
by a re�ned speci�cation of each activity in terms of the domain model. Such
a semantics becomes even more useful when supported by a tool. Integrated
behavior models are particularly apt for specifying requirements in a use case
driven approach using UML.



We have used integrated behavior models which are supported by the Acti-
Gra tool. We modeled aspect-oriented separation of concern at the use case
level. Since aspects typically also bear functional behavior, they were straight-
forward to model as graph transformation rules together with weaving among
activities diagrams. Activity diagrams play a key role in the analysis, similar
to that of data in dynamic program analysis: in a static program analysis one
considers all the possible paths of execution (in fact also several unfeasible ones),
while in dynamic analyses the input data are used to narrow the search space.
Similarly, activities are used to drive the analysis to a concrete set of interac-
tions, instead of considering all the conceivable ones for a given a set of aspects
and a base. At the programming level, this reduction is mostly provided by the
base, which gives the control �ow in which aspects are intertwined. In our model
aspects and base are described as transformation rules on the domain model,
thus the activity is the key to reduce the indeterminacy of all the possible weav-
ing actions. By integrating the critical pair (�static� analysis) analysis performed
by AGG, with the ActiGra support for activities, one has the possibility to see
how dependencies might cause problems in the activities of a complex system.

It is an advantage that the analysis is not di�erent across the di�erent mod-
eling concerns, i.e, the base, the aspects, and also the woven system. In the small
example presented, we can reveal simple dependencies between base and aspect
by using the analysis. The tool also helps in making the example sound and
complete by analyzing the base and the aspect separately for �aws. This is an
often made observation that models become more sound as soon as a tool for
executing or analyzing them is deployed, which is one reason for using tools.

Until now, there is no tool that supports integrated behavior models and
transformation of these models on a meta level, which could be used, e.g., for
specifying aspect weaving. Using such a tool would even allow to go beyond a
set of prede�ned weaving operations since new activities could be added and
tested by the experienced user. Moreover, no dedicated tools for aspect-oriented
modeling on top of integrated behavior models exist either, allowing stereotypes
and weaving as just mentioned.

In the example it could be studied, how causalities and con�icts established
during the separate analysis for base and aspect changed after the weaving had
been carried out. It is up to future work to generalize and formally show such
e�ects.

The example was too small to reveal bene�ts of the modeling approach or the
tooling such as major modeling mistakes like overlapping or missing domain con-
cepts or functionality. Here, a more comprehensive case study would be useful. It
also remains to implement the example in order to study whether the identi�ed
aspects persist in the code at all and whether the analysis has a positive e�ect
on the quality of the code. To this end, empirical studies have to be carried out
comparing implementation with and without this particular modeling approach
and with and without the tooling support.
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